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6.1 Let (M, g) be a smooth Lorentzian manifold. We will de�ne the Riemann curvature tensor

R : Γ(M)× Γ(M)× Γ(M) → Γ(M) by

R(X, Y )Z
.
= ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z.

(a) Show that R is indeed a (1, 3)-tensor �eld which is antisymmetric in its �rst two arguments.

Let V be a Killing vector �eld on (M, g) and γ : (a, b) → M a geodesic for g.

(b) Prove that, for any vector �eld Z along γ:

g
(
∇γ̇∇γ̇V, Z

)
+ g

(
R(γ̇, Z)V, γ̇)

)
= 0.

Deduce that the components of V k of V in any local coordinate system around a given
point on γ satisfy a second order linear ODE along γ.

(c) Show that if V |p = 0 and ∇V |p = 0 for some p ∈ M, then V = 0 on the whole connected
component of M containing p.

(d) What is the maximum dimension of the Lie algebra of Killing �elds on a connected
Lorentzian manifold of dimension n + 1? Compare it with the dimension of the Killing
algebra on Minkowski spacetime.

Solution. (a) Showing that R is a tensor �eld amounts to showing that it is C∞-multilinear in all
its arguments. This is a simple calculation (using successively the fact that ∇ satis�es the Leibniz
rule with respect to its second argument and the fact that [fX, Y ] = f [X, Y ] − Y (f)X). The
antisymmetry of R(X, Y )Z in X, Y also follows directly from the de�nition of R.

(b) Recall that a Killing vector �eld V satis�es the identity

g(∇XV, Y ) + g(∇Y V,X) = 0 (1)

for all vector �elds X, Y . As a special case of (1),

g(∇XV,X) = 0 for all vector �elds X. (2)

Let γ : (a, b) → M be a geodesic for g (i.e. satis�es ∇γ̇ γ̇ = 0) and Z be any vector �eld along γ.
The identity that we have to prove, namely

g
(
∇γ̇∇γ̇V, Z

)
+ g

(
R(γ̇, Z)V, γ̇

)
= 0, (3)

is a pointwise identity, i.e. in order to show that it is true at a point p ∈ γ it su�ces to know the
vector �elds V, Z, γ̇ only in a small neighborhood of p. To this end, without loss of generality, we can
assume (by restricting γ to a subdomain of (a, b)) that γ doesn't intersect itself and is contained in
a single coordinate chart; in this way, we can extend γ̇ and Z (in a non-unique way) to vector �elds
de�ned on the whole of M (using suitable cut-o� functions in the given coordinate chart around p).
In this way, we can make sense of expressions like ∇Z γ̇ (even though the value of such an expression
could depend on our precise choice of extending γ̇ and Z beyond γ).
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Applying (1) for X = γ̇ and Y = Z and obtain after di�erentiating along γ:

0 =
d

dt

(
g(∇γ̇(t)V |γ(t), Z|γ(t)) + g(∇ZV |γ(t), γ̇(t))

)
= γ̇

(
g(∇γ̇V, Z) + g(∇ZV, γ̇)

)
= g

(
∇γ̇∇γ̇V, Z

)
+ g

(
∇γ̇V,∇γ̇Z

)
+ g

(
∇γ̇∇ZV, γ̇

)
+ g

(
∇ZV,∇γ̇ γ̇

)
= g

(
∇γ̇∇γ̇V, Z

)
+ g

(
∇γ̇V,∇γ̇Z

)
+ g

(
∇γ̇∇ZV, γ̇

)
.

Using the de�nition of the Riemann curvature tensor, we can express

∇γ̇∇ZV = R(γ̇, Z)V +∇Z∇γ̇V +∇[γ̇,Z]V.

Thus, returning to the above calculation, we have:

0 = g
(
∇γ̇∇γ̇V, Z

)
+ g

(
∇γ̇V,∇γ̇Z

)
+ g

(
R(γ̇, Z)V, γ̇

)
+ g

(
∇Z∇γ̇V, γ̇

)
+ g

(
∇[γ̇,Z], γ̇

)
= g

(
∇γ̇∇γ̇V, Z

)
+ g

(
∇γ̇V,∇γ̇Z

)
+ g

(
R(γ̇, Z)V, γ̇

)
+
(
Z
(
g(∇γ̇V, γ̇)

)
− g

(
∇γ̇V,∇Z γ̇

))
+ g

(
∇[γ̇,Z]V, γ̇

)
(2) for X=γ̇

= g
(
∇γ̇∇γ̇V, Z

)
+ g

(
R(γ̇, Z)V, γ̇

)
+ g

(
∇γ̇V,∇γ̇Z −∇Z γ̇

)
+ g

(
∇[γ̇,Z]V, γ̇

)
∇ is symmetric

= g
(
∇γ̇∇γ̇V, Z

)
+ g

(
R(γ̇, Z)V, γ̇

)
+ g

(
∇γ̇V, [γ̇, Z]

)
+ g

(
∇[γ̇,Z]V, γ̇

)
(1)
= g

(
∇γ̇∇γ̇V, Z

)
+ g

(
R(γ̇, Z)V, γ̇

)
,

i.e. (3) holds.
In any local coordinate chart (x0, . . . , xn), choosing Z = ∂

∂xα in the identity (3), we have

0 = gαβ(∇γ̇∇γ̇V )β +Rκλµαγ̇
µγ̇κV λ (4)

⇒ 0 = (∇γ̇∇γ̇V )β + gαβRκλµαγ̇
µγ̇κV λ

=
d2

dt2
V β +

d

dt

(
Γβ
µν γ̇

µV ν
)
+ Γβ

µν γ̇
µdV

ν

dt
+ Γβ

µνΓ
ν
κλγ̇

µγ̇κV λ + gαβRκλµαγ̇
µγ̇κV λ, (5)

where we used the fact that, if Z is a vector �eld along γ, then (∇γ̇Z)
β = d

dt
Zβ + Γβ

µν γ̇
µZν . Notice

that the above is a linear system of second order ODEs for the components V β(t) of V |γ(t).
(c) Let p ∈ M be as in the statement of the exercise, i.e. V |p = 0 and ∇V |p = 0 (the latter

equality means that ∇XV |p = 0 for any vector �eld X). Let Z ⊂ M be the subset of M where V
and ∇V vanish, i.e.

Z =
{
q ∈ M : V |q = 0 and ∇V |q = 0

}
.

We want to show that Z = M. Since M is connected, it su�ces to show that Z is both open and
closed in M, and that it is non-empty. Since p ∈ Z, we know that Z ≠ ∅. Since V is a continuous
(in fact, smooth) vector �eld, we also know that Z has to be closed. Therefore, it only remains to
show that Z is open.
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Let q ∈ Z. We will show that there exists an open neighborhood U of q in M such that V = 0
on U ; this will imply that U ⊂ Z and, thus, that Z is open. Let γ : (−a, a) → M be any geodesic
of (M, g) with γ(0) = q and let (x0, . . . , xn) be any coordinate system on a neighborhood W around
q. The condition q ∈ Z implies that

V β|γ(0) = 0 = ∂αV
β|γ(0). (6)

Therefore, the components V β(t) of V |γ(t) satisfy the second order ODE (5) V β(0) = dV β

dt
(0) = 0; by

the uniqueness of solutions to systems of linear ODEs, we infer that V ≡ 0 on γ ∩W . As a result,
V ≡ 0 on the subset ofW covered by geodesics passing through q, i.e. by the image of the exponential
map expq : Ωq ⊂ TqM → M. Since expq is a local di�eomorphism (because d expq |0 = Id), we know
that the image of expq contains an open neighborhood of q; thus, Z contains an open neighborhood
of q.

(d) As a consequence of part (c) of this exercise, we know that, on a connected Lorentzian
manifold (M, g), if two Killing �elds V (1), V (2) satisfy V (1)|p = V (2)|p and ∇V (1)|p = ∇V (2)|p at a
point p ∈ M, then V (1) = V (2) on the whole of M. Therefore, the maximum number of linearly
independent Killing vector �elds on M is at most as large as the number of independent components
of the tangent vector V |p and the tensor∇V |p. Note that not all components of∇V |p are independent:
In any local coordinate system around p, the relation (1) can be written as

∇αVβ +∇βVα = 0.

Therefore, ∇V |p has at most as many independent components as an antisymmetric matrix. Col-
lecting these observations, if dimM = n+1, then the number of independent components of V |p and
∇V |p (and, therefore, the maximum dimension of the Killing algebra of (M, g)) is (n+1)+ n(n+1)

2
=

(n+1)(n+2)
2

. Note that this upper bound is optimal, since it is achieved in the case of Minkowski
spacetime (Rn+1, η) and de-Sitter spacetime (R× S

n, gdS).

6.2 (a) Let (M, g) be a smooth Lorentzian manifold and let V be a Killing vector �eld on (M, g).
Show that for any geodesic γ : I → M, the inner product g(γ̇, V ) is constant along V .

*(b) Let M = R×M̄ be a product manifold equipped with a Lorentzian metric g of the form

g = −f · dt⊗ dt+ dt⊗ ω + ω ⊗ dt+ ḡ,

where

◦ t : M = R× M̄ → R is the projection on the �rst factor.

◦ f, h are smooth functions on M̄.

◦ ω is an 1-form on M̄.

◦ ḡ is a Riemannian metric on M̄.

Let E ⊂ M̄ be the set where f < 0. Show that, for every p ∈ R × E, there exists a
maximally extended null geodesic γ : (a, b) → M for g with γ(0) = p which does not
escape R× E (i.e. γ(s) ∈ R× E for all s ∈ (a, b).
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Solution. (a) Using the identity (2) for a Killing vector �eld V for X = γ̇, we can readily compute
along a geodesic γ̇ of (M, g):

d

dt

(
g(V, γ̇)

)
= γ̇

(
g(V, γ̇)

)
= g

(
∇γ̇V, γ̇

)
+ g

(
V,∇γ̇ γ̇

)
= 0 + 0.

Therefore, g(V, γ̇) is constant along γ.

(b) Let T be the vector �eld which generates the translations of M = R × M̄ in the R factor,
�xed by the requirement that T (t) = 1 (where t : M == R × M̄ → R is the projection on the �rst
factor). If (x1, . . . , xn) is a local coordinate system on a subset U of M̄, we can extend it to a local
coordinate system (t, x1, . . . , xn) on R × U ⊂ M; in any such coordinate system, T is simply the
vector �eld ∂

∂t
. Moreover, in such a coordinate system the metric g takes the form

g = −fdt2 + 2ωidtdx
i + ḡijdx

idxj,

where ωi and ḡij depend only on x1, . . . , xn; therefore, T = ∂
∂t

is a Killing vector �eld on (M, g).
Moreover, in view of the form of g, we have

g(T, T ) = −f. (7)

Furthermore, for any p = (t0, q) ∈ M = R × M̄, if v ∈ TpM satis�es dt(v) = 0 (i.e. v is tangential
to the slice {t0} × M̄ at p), then g(v, v) = ḡijv

ivj. Since ḡ is Riemannian, we infer that any such v
is spacelike. Equivalently,

dt(v) ̸= 0 if g(v, v) ⩽ 0 and v ̸= 0. (8)

If E = {q ∈ M̄ : f(q) < 0} is non-empty and p ∈ R × E, then (7) implies that T is spacelike
at p. Therefore, there exists a tangent vector v ∈ TpM\ 0 such that v is null (i.e. g(v, v) = 0) and
sati�es g(v, T |p) > 0 and dt(v)|p > 0 (note that any null vector v cannot satisfy dt(v) = 0, since that
would imply that v is spacelike by (8)). Note that this statement is the same as saying that in any
Lorentzian inner product space (V,m), if v1 ̸= 0 is a spacelike vector then there exists a null vector
v2 with m(v1, v2) > 0 such that v2 is future directed (it is an easy exercise to show that this is true).

Let γ : (a, b) → M (with 0 ∈ (a, b)) be the maximally extended geodesic with γ(0) = p and
γ̇(0) = v. Note the following facts:

� Since γ is a geodesic, g(γ̇, γ̇) is constant along γ; therefore, g(γ̇(s), γ̇(s)) = g(v, v) = 0 for all
s ∈ (a, b), i.e. γ is a null geodesic.

� By part (a) of this exercise, g(γ̇, T ) stays constant along γ; therefore, g(γ̇(s), T |γ(s)) > 0 for all
s ∈ (a, b).

� Since γ̇ is nowhere spacelike along γ, by (8) we have that dt(γ̇(s)) ̸= 0 for s ∈ (a, b); therefore,
dt(γ̇(s)) > 0 (since this is the case for s = 0).

The above facts now imply that there can be no s ∈ (a, b) such that γ(s) ∈ M\
(
R×E

)
: Assuming,

for the sake of contradiction, that such an s exists, then f ⩾ 0 at γ(s), i.e. T |γ(s) is null or timelike.
Since dt(γ̇(s)) > 0 and dt(T ) = T (t) = 1 > 0, T |γ(s) and γ̇(s) belong to the same timecone in
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(Tγ(s)M, g); the inner product of two causal vectors belonging to the same timecone is always ⩽ 0
(it is easy to check that), which is a contradiction in view of the fact that g(γ̇(s), T |γ(s)) > 0 for all
s ∈ (a, b).

6.3 Consider the manifold M = R× R equipped with the Lorentzian metric

gAdS = −(1 + r2)dt2 +
1

1 + r2
dr2

(this is known as the 1+1 dimensional Anti-de Sitter metric). Note that (M, g) can be thought
of as the universal Lorentzian cover of the (topological) cylinder S = {−x2 − y2 + r2 = +1} in
the pseudo-Euclidean space (R2+1, η(2,1)), where η(2,1) = −dx2 − dy2 + dr2.

(a) Show that (M, gAdS) is timelike geodesically complete, i.e. that all timelike geodesics of
gAdS can be extended on the whole of R.

(b) Show that all timelike geodesics γ passing through (t, r) = (0, 0) also pass through (t, r) =
(kπ, 0), k ∈ Z. Show that there exists a point p ∈ I+[(0, 0)] such that (0, 0) and p cannot
be connected with a timelike geodesic.

Solution. (a) Let γ : (a, b) → M, s → γ(s) =
(
t(s), r(s)

)
, be a timelike geodesic; assume (by

shifting the parametrization, if necessary) that 0 ∈ (a, b). Instead of using the second order geodesic
equation, we will �nd a closed expression for γ using �rst order conserved quantities along γ.

� Since γ is geodesic, the quantity gAdS(γ̇, γ̇) is constant along γ; since we assumed that γ is
timelike, gAdS(γ̇, γ̇). Expressed in coordinates, we have

−
(
1 + r(s)2

)
ṫ2(s) +

1

1 + r(s)2
ṙ2(s) = −A, A > 0. (9)

� Since the components of gAdS in the (t, r) coordinate system are independent of t, the vector
�eld T = ∂

∂t
is a Killing vector �eld for gAdS and, thus, gAdS(γ̇, T ) is constant along γ. Therefore,

−
(
1 + r(s)2

)
ṫ(s) = −B, B ∈ R. (10)

Notice that, plugging the expression for ṫ from (10) in (9), we infer that

B2 − A = r(s)2A+ ṙ(s)2 ⩾ 0. (11)

Combining (9) and (10), we obtain:

dt

ds
=

B

1 + r(s)2
, (12)

dr

ds
= ±

√
B2 −

(
1 + r(s)2

)
A.

Note that the equation for r(s) can be explicitly solved:
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� In the case when B2 − A > 0,

� r(s)

r(0)

dr√
(B2 − A)− Ar2

= ±s ⇒ arcsin
(√ A

B2 − A
r(s)

)
−arcsin

(√ A

B2 − A
r(0)

)
= ±

√
As.

Therefore,

r(s) =

√
B2 − A

A
sin

(
±

√
As+ ρ0

)
for ρ0 = arcsin

(√ A

B2 − A
r(0)

)
.

� In the case when B2 − A = 0, (11) implies that

r(s) = 0

(this is only the case if r(0) = 0 and ṙ(0) = 0).

Notice also that, given the closed form for r(s), the function t(s) can be also determined by integrating
the equation for dt

ds
, namely

t(s) = t(0) +

� s

0

B

1 + r(s)2
ds.

We therefore note that the expression for γ(s) = (t(s), r(s)) can be extended for s ∈ (−∞,+∞)
independently of the choice of the initial point (t(0), r(0)). In other words, every maximal timelike
geodesic in (M, gAdS) is de�ned for s ∈ R and, thus, (M, gAdS) is timelike geodesically complete.

(b) Let γ : R → M, s → (t(s), r(s)) be a timelike geodesic such that γ(0) = (0, 0). It will be
more convenient to change the parametrization of γ, so that it is parametrized by the coordinate t
rather than the natural parameter s (this is possible since ṫ ̸= 0, according to (12) and the fact that
B2 ⩾ A > 0; note that, with this parametrization, γ will not be a geodesic. Moreover, in view of the
fact that, along γ, we have (see (11)):

B2 − A = r(s)2A+ ṙ(s)2 ⩾ r(s)2A,

we know that

sup
s∈R

r(s)2 ⩽
B2 − A

A
.

Thus, from the equation
dt

ds
=

B

1 + r(s)2

we infer that infs∈R
∣∣ dt
ds

∣∣ ⩾ A
|B| > 0 and, therefore,

lim
s→+∞

t(s) =

{
+∞, B > 0,

−∞, B < 0

(and similarly for s → −∞).
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In particular, we can calculate:(dr
dt

)2

=
( dr

ds
dt
ds

)2

= (1 + r2)2
(B2 − A

B2
− A

B2
r2
)

Depending on the value of B2 − A, the above equation admits two types of solutions:

� If B2 − A = 0, then, as explained above, r(t) = 0.

� If B2 − A > 0, then, after integrating the above equation, we get

� r(t)

0

dr

(1 + r2)
√

B2−A
B2 − A

B2 r2
= ±t ⇒ r(t)√

B2−A
B2 − A

B2 (r(t))2
= ± tan t.

Therefore, we infer that, for any A > 0 and B2 ⩾ A, the point (t, r) = (kπ, 0), k ∈ Z, belongs to the
curve γ. Thus, every maximal timelike geodesic through (0, 0) passes through (π, 0).

For ϵ > 0 su�ciently small, let us consider the points p = (0, 0) and q = (π, ϵ). From the explicit
formula for timelike geodesics through p that we obtained above, it is easy to see that every such
geodesic s → (t(s), r(s)) satis�es r(s) = 0 when t(s) = π. Therefore, no such geodesic passes through
the point q. On the other hand, there is a future directed timelike curve connecting p to q, namely
the curve s → (t(s), r(s)) = (s, ϵ

π
s), s ∈ [0, π]. Thus, p and q are connected by a timelike curve but

not with a timelike geodesic.

Alternative approach: There is a more �geometric� way of constructing the geodesics of Anti-
de Sitter spacetime. The starting point for this is the following fact: On any pseudo-Euclidean
space (Rm, η(p,q)), where η(p,q) is the inner product of signature (p, q), p+ q = m, given by the matrix

η(p,q) = diag(−1, . . . ,−1︸ ︷︷ ︸
♯ p

,+1, . . . ,+1︸ ︷︷ ︸
♯ q

),

let S ⊂ R
m be a connected component of the set

{
x ∈ R

m : η(p,q)(x, x) = M
}
for some M ∈ R\{0}

and let g denote the induced pseudo-Riemannian metric on S. Note that the standard round sphere in
Euclidean space, de-Sitter spacetime (viewed as a subset of (Rn+1, η(1,n))) and anti-de Sitter spacetime
after the identi�cation t ≡ t + 2π (see the statement of this exercise) can all be expressed like this.
In this case, the intersection of any 2-plane Π passing through 0 with S is (up to reparametrization)
a geodesic of (S, g) (and, in fact, all geodesics of S can be expressed in this way). This statement
should be familiar to you in the case of the round sphere, but the proof of that statement actually
is independent of the signature of the ambient inner product space, and consists of the following
observations:

� The acceleration of any curve lying in a 2-plane Π is tangential to Π.

� At any point x ∈ S =
{
x ∈ R

m : η(p,q)(x, x) = M
}
, the normal vector n̂ with respect to

η(p,q) is parallel to x (i.e. to the radial vector). Moreover, if M ̸= 0, the normal vector n̂ is
not tangent to S (in particular, the induced metric g is a non-degenerate pseudo-Riemannian
metric).
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� As a consequence of the above, if a curve γ : (a, b) → S parametrizes the intersection Π∩S for
some 2-plane Π and x ∈ γ, then TxΠ is spanned by n̂ ∥ x and γ̇, so the acceleration γ̈ (viewed
as a curve in Rm) lies in the span of n̂ and γ̇.

� For any submanifold Mm−1 ⊂ R
m with induced non-degenerate pseudo-Riemannian metric ḡ,

the Levi-Civita connection ∇̄ of ḡ is obtained as the orthogonal projection on TM ⊂ TRm

of the �at connection of (Rm, η(p,q)). In particular, a curve γ in (M, g̃) is a geodesic if its
acceleration γ̈ (when viewed as a curve in Rm) is parallel to the normal n̂ of M. Moreover, γ
can be reparametrized to be a geodesic of (M, g̃) if γ̈ lies in the span of n̂ and γ̇.

As a consequence of the above statements, we deduce that the geodesics of the cylinder S =
{−x2 − y2 + r2 = +1} (viewed as a subset of (R2+1, η(2,1))) are the intersections of S with 2-planes of
R
2+1 passing through the origin. In particular, timelike geodesics of S correspond to the intersection

with timelike planes, which can be easily seen to be ellipses wrapping around S. Note that, since
both S and any such timelike plane Π are symmetric with respect to the origin, if x ∈ Π∩S then we
also have −x ∈ π∩S. In particular, every timelike geodesic through x will have to also pass through
−x. Unwrapping the cylinder S along the S1 direction, it is easy to verify that this observation
corresponds to the statement of part (b) of this exercise.

6.4 Let (M, g) be a smooth Lorentzian manifold and let S ⊂ M be a smooth null hypersurface.
Let L be a non-zero vector �eld along S such that, for every p ∈ S, L|p ⊥ TpS.

(a) Show that L is tangent to S (i.e. L|p ∈ TpS for all p ∈ S).

(b) Show that, for any two vector �elds X, Y tangent to S, we have

g
(
∇XL, Y

)
= g

(
∇YL,X

)
.

(Hint: You might want to use the fact that, if V,W are two vector �elds tangent to a

submanifold N ⊂ M, then [V,W ] is also tangent to N .)

(c) Using the above formula, show that ∇LL|p ⊥ TpS for all p ∈ S. Show that

∇LL = κL for some κ : S → R.

Deduce that the integral curves of L in S are (up to reparametrization) null geodesics.
Infer that any null hypersurface of (R1+n, η) is a union of null lines.

(d) Assume, in addition, that there exists a Killing vector �eld V on (M, g) such that V
is collinear with L along S (such a null hypersurface is called a Killing horizon). By
replacing L with V in the above arguments, we infer that

∇V V |S = κV |S.

Show that the function κ above is a constant along the null generators of S, i.e. V (κ) = 0.
This is the surface gravity of the Killing horizon.
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(e) Show that the hyperplane H = {x = t} in (R3+1, η) (with the usual Cartesian coordinate
system (t, x, y, z)) is a Killing horizon (and �nd the corresponding Killing vector �eld of
(R3+1, η). Can you compute its surface gravity?

Solution. (a) For any p ∈ S, let us consider the Lorentzian inner product space (TpM, g|p) and
let V = TpS ⊂ TpM. Our assumption that S is a null hypersurface of M implies that V is a null
codimension 1 hyperplane of TpM, i.e. the form g|p restricted to V is degenerate: There exists a
v ∈ V such that g|p(v, w) = 0 for all w ∈ V . Therefore, V ⊂ v⊥ = {w ∈ TpM : g|p(v, w) = 0}. Since
V is of codimension 1 and v⊥ is also of codimension 1 (in view of the fact that g|p is non-degenerate
on TpM, we cannot have g(v, w) = 0 for all w ∈ TpM), we have

v⊥ = V

In particular, for any w /∈ V , the above relation implies that, necessarily, g|p(v, w) ̸= 0. Since we
assumed thatL|p ⊥ V , we must have g|p(v, L) = 0; thus, L|p ∈ V . Note that, in fact, L|p must be
parallel to v: Since L|p ∈ V and L|p ⊥ V , we have L|p ⊥ L|p ⇔ g|p(L,L) = 0; but as we showed in
Exercise 2.1, if two null vectors (in this case v and L|p are perpendicular to each other, then they
have to be parallel).

Remark. This is a general statement about Lorentzian inner product spaces (W,m): The per-
pendicular direction to a null hyperplane V lies inside V , and it is simply the direction of the null
generator of V (namely the direction in which m|V degenerates).

(b) We can readily calculate at any point on S:

g(∇XL, Y ) = X
(
g(L, Y )

)
− g(L,∇XY ) = −g(L,∇XY )

(since g(L, Y ) = 0 on S and we are di�erentiating in the direction of X which is tangential to S)
and, similarly (with the roles of X and Y inverted):

g(∇YL,X) = −g(L,∇YX).

Subtracting the above expressions and using the fact that the Levi-Civita connection is torsion-free,
we obtain:

g(∇XL, Y )− g(∇YL,X) = −g(L,∇XY ) + g(L,∇YX) = g(L,∇YX −∇XY ) = g(L, [X, Y ]) = 0,

since [X, Y ] is tangential to S (given that X, Y are; you can check this in local coordinates in which
S is the level set {x0 = 0}).

(c) For any p ∈ S, we have showed in part (a) that L|p ∈ TpS; therefore, plugging in X = L in
the relation proven in part (b), we obtain that, for any p ∈ S and any Y ∈ TpS:

g|p(∇LL, Y ) = g|p(∇YL,L) =
1

2
Y
(
g(L,L)

)∣∣
p
= 0,

since g(L,L) = 0 on S (recall that L ⊥ TpS and L ∈ TpS) and Y is a direction tangential to S.
Therefore,

∇LL
∣∣
p
⊥ TpS

L∈TpS⇒ ∇LL
∣∣
p
⊥ L|p.
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Since any two perpendicular null vectors have to be parallel to each other (see Ex. 2.1), we infer that

∇LL
∣∣
p
= κpL|p for some κp ∈ R.

Thus, along S, we have
∇LL = κL for some κ : S → R

(note that κ has to be a smooth function, since both ∇LL and L are smooth vector �elds and L
doesn't vanish).

Let γ : [0, l] → M be an integral curve of L, i.e. γ(0) ∈ S and γ̇(t) = L|γ(t) for al t ∈ [0, l];
note that such an integral curve has to lie inside S, since L is tangnetial to S (again, this can be
easily veri�ed in local coordinates where S is the level set of one of the coordinate functions). Then
γ̇ satis�es

∇γ̇ γ̇ = κ|γ(t)γ̇. (13)

This is the equation of a reparametrized geodesic: If we reparametrize γ as

γ̃(s) = γ ◦ h(s) for some strictly monotonic function h : [0, l] → [a, b],

then
˙̃γ(s) = h′(s)γ̇(h(s)),

and (noting that, if f is a function de�ned along γ̃, then d
ds
(f |γ̃(s)) = ˙̃γ(f)|γ̃(s)

∇ ˙̃γ(s)
˙̃γ(s) = ∇ ˙̃γ(s)

(
h′(s)γ̇(h(s))

)
= ˙̃γ(s)(h′)γ̇(h(s)) + h′(s)∇ ˙̃γ(s)γ̇(h(s))

= h′′(s)γ̇(h(s)) + h′(s)∇γ̇(h(s))γ̇(h(s)).

Using the relation (13), we therefore infer that

∇ ˙̃γ(s)
˙̃γ(s) = h′′(s)γ̇(h(s)) + κ|γ(h(s))γ̇(h(s)).

Choosing the function h so that h′′(s) = −κ|γ(h(s)), we therefore infer that ∇ ˙̃γ(s)
˙̃γ(s) = 0, i.e. the

reparametrization γ̃ of γ is a geodesic.

(d) Let V be a Killing vector �eld as in the statement of the Exercise. For any p ∈ S, let U
be an open neighborhood of p in M with compact closure; for any t > 0 su�ciently small, let
Φ

(V )
t : U → M be the �ow map associated to V (i.e. the �ow along the integral lines of V for time

t). Because V is tangent to S, we have that Φ
(V )
t (U ∩ S) ⊂ S. Moreover, because V is Killing, the

map Φ
(V )
t : (U , g) →

(
Φ

(V )
t (U), g

)
⊂ (M, g) is an isometry (i.e.

(
Φ

(V )
t

)
∗g = g). Our aim is to show

that the isometric �ow of V should leave the �geometric� relation

∇V V |S = κV |S

invariant, which should imply that κ is constant along the �ow of V .
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In general, if Φ : (N1, g1) → (N2, g2) is an isometry between to Lorentzian (or, more generally,
pseudo-Riemannian) manifolds, then Φ �preserves� any natural construction obtained from the metric
tensor, such as the Levi-Civita connection. In particular, for any X, Y ∈ Γ(N1):

Φ∗(∇(1)
X Y ) = ∇(2)

Φ∗XΦ
∗Y,

where ∇(i) is the Levi-Civita connection of gi; this can be seen by recalling that the Levi-Civita
connection ∇ of a metric g is uniqueley determined by the formula of Koszul (for any three vector
�elds X, Y, Z):

2g
(
∇XY, Z

)
= X

(
g(Y, Z)

)
+ Y

(
g(Z,X)

)
−Z

(
g(X, Y )

)
− g

(
X, [Y, Z]

)
+ g

(
Z, [X, Y ]

)
+ g

(
Y, [Z,X]

)
.

In our case, since Φ
(V )
t is an isometry, we must have(

Φ
(V )
t

)∗(∇V V ) = ∇(
Φ

(V )
t

)∗
V

((
Φ

(V )
t

)∗
V
)
. (14)

Note that the map
(
Φ

(V )
t

)∗
p
: TpM → T

Φ
(V )
t (p)

M satis�es(
Φ

(V )
t

)∗
p
(V |p) = V |

Φ
(V )
t (p)

(15)

(this is in general true for the �ow map of any vector �eld; you can readily verify that in a system of

coordinates where V = ∂
∂x1 and Φ

(V )
t is just a coordinate translation x1 → x1 + t). Therefore, using

the given relation
∇V V |S = κV |S

in (14), we infer that (
Φ

(V )
t

)∗
p

(
κpV |p

)
= κ

Φ
(V )
t (p)

V |
Φ

(V )
t (p)

which, in view of (15) (and the linearity of
(
Φ

(V )
t

)∗
p
), implies that

κpV |
Φ

(V )
t (p)

= κ
Φ

(V )
t (p)

V |
Φ

(V )
t (p)

⇒ κp = κ
Φ

(V )
t (p)

,

i.e. κ is constant along the �ow of p.

(e) Let H = {x = t} ⊂ (R3+1, η). It is easy to verify that H is a null hypersurface with null
generator L = ∂

∂t
+ ∂

∂x
. Note also that the boost vector �eld

V = t
∂

∂x
+ x

∂

∂t

is a Killing vector �eld of (R3+1, η) which is collinear to L along H. In particular, H is a Killing

horizon. Note also that

∇V V = ∇t ∂
∂x

+x ∂
∂t

(
t
∂

∂x
+ x

∂

∂t

)
= t

∂

∂t
+ x

∂

∂x

and, therefore, along H = {x = t}:
∇V V |H = V |H.
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In particular, κ = 1.
Remark. Note that V vanishes along the 2-surface H ∩ {t = 0}. It is an easy exercise to verify
that, for any Killing horizon with positive surface gravity on which the null generators are complete
geodesics, the Killing vector �eld must vanish at some point along the null generator towards the
past in �nite a�ne time. Another Killing horizon that we will encounter with a similar property will
be the event horizon of the maximally extended Schwarzschild spacetime.
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