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6.1 Let (M, g) be a smooth Lorentzian manifold. We will define the Riemann curvature tensor

R:T(M)xT'(M) x T(M) — T'(M) by
R(X,Y)Z = VxVyZ — VyVxZ — Vixy Z.
(a) Show that Risindeed a (1, 3)-tensor field which is antisymmetric in its first two arguments.
Let V be a Killing vector field on (M, g) and 7 : (a,b) — M a geodesic for g.

(b) Prove that, for any vector field Z along ~:
9(V5V5V, Z) +9(R(3, 2)V. 7)) = 0.

Deduce that the components of V* of V in any local coordinate system around a given
point on v satisfy a second order linear ODE along ~.

(c) Show that if V|, = 0 and VV|, = 0 for some p € M, then V = 0 on the whole connected
component of M containing p.

(d) What is the maximum dimension of the Lie algebra of Killing fields on a connected
Lorentzian manifold of dimension n 4+ 17 Compare it with the dimension of the Killing
algebra on Minkowski spacetime.

Solution. (a) Showing that R is a tensor field amounts to showing that it is C°°-multilinear in all
its arguments. This is a simple calculation (using successively the fact that V satisfies the Leibniz
rule with respect to its second argument and the fact that [fX,Y] = f[X,Y] — Y (f)X). The
antisymmetry of R(X,Y)Z in XY also follows directly from the definition of R.

(b) Recall that a Killing vector field V' satisfies the identity
g(VxV.Y)+g(VyV,X) =0 (1)
for all vector fields X,Y. As a special case of (1),
g(VxV,X) =0 for all vector fields X. (2)

Let v : (a,b) = M be a geodesic for g (i.e. satisfies V;4 = 0) and Z be any vector field along .
The identity that we have to prove, namely

9(V4ViV, Z) + g(R(3, Z)V,7) =0, (3)

is a pointwise identity, i.e. in order to show that it is true at a point p € ~ it suffices to know the
vector fields V, Z, 4 only in a small neighborhood of p. To this end, without loss of generality, we can
assume (by restricting v to a subdomain of (a,b)) that v doesn’t intersect itself and is contained in
a single coordinate chart; in this way, we can extend 4 and Z (in a non-unique way) to vector fields
defined on the whole of M (using suitable cut-off functions in the given coordinate chart around p).
In this way, we can make sense of expressions like V77 (even though the value of such an expression
could depend on our precise choice of extending 4 and Z beyond 7).
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Applying (1) for X =4 and Y = Z and obtain after differentiating along ~:

0= %(Q(th)‘/lw(t)’ Zlywy) +9(VZV ]y, W(ﬂ))

= 3(9(VV.2) + 9(V2V.4))

=9(V4ViV. Z) + g(V5V,V52) + g(V4V V. 4) + 9(VZV. V44)

=g(VsVsV, Z) + g(V4 V. V5.2) + g(Vi V2V, 7).
Using the definition of the Riemann curvature tensor, we can express

ViVzV =Ry, Z)V +VzVV + Vi 4V
Thus, returning to the above calculation, we have:
0 = 9(V3VsViZ) +yg
= g(v-v-v, Z)+g

I 0(V,V5V, Z) + g(R(, 2)V, %)

+9(V5V.VsZ =V 24) +9(ViaV.9)
9(VsVsV, Z) + g(R(¥, Z)V, %)
+9(VsV, 14, 2)) + (Vg Ve )
Y g(V3VV2) + (R, 2)V2A),

ViV, ViZ) + g(R(3, 2V, A7) + 9(V2V Vi) + 9(Visz, %)
ViV, Vs 2) + g(R(, 2)V,A) + (Z(9(V5V24)) = 9(V3V, V24) ) + 9(T,2V24)

(
(

V is symmetric

i.e. (3) holds.

In any local coordinate chart (z°,...,2"), choosing Z = =% in the identity (3), we have
0= ga5(V5V5V)” + Rinua V9"V (4)
= 0= (V4ViV)’ + ¢*° Rorua V5"V
d2 B8 d B py v B8 Vv B TWw s p KIS af KT/
=5V +dt<1“,,7v>+rw o Tl VA + g Roe "V, (5)

where we used the fact that, if Z is a vector field along v, then (V;2)? = £2° + T 512", Notice
that the above is a linear system of second order ODEs for the components Vﬁ( ) of V-
(c) Let p € M be as in the statement of the exercise, i.e. V|, = 0 and VV/|, = 0 (the latter

equality means that Vx V|, = 0 for any vector field X). Let Z C M be the subset of M where V
and VV vanish, i.e.

Z={qeM:V],=0and VV|, =0}.

We want to show that Z = M. Since M is connected, it suffices to show that Z is both open and
closed in M, and that it is non-empty. Since p € Z, we know that Z # ). Since V' is a continuous
(in fact, smooth) vector field, we also know that Z has to be closed. Therefore, it only remains to
show that Z is open.
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Let ¢ € Z. We will show that there exists an open neighborhood U of ¢ in M such that V' =0
on U; this will imply that & C Z and, thus, that Z is open. Let v : (—a,a) — M be any geodesic
of (M, g) with v(0) = g and let (2,...,2") be any coordinate system on a neighborhood W around
q- The condition ¢ € Z implies that

Vﬁ|v(0) =0= a0¢Vﬁ|“/(0)' (6)

Therefore, the components V?(t) of V|, satisfy the second order ODE (5) V#(0) = dde(O) = 0; by
the uniqueness of solutions to systems of linear ODEs, we infer that V' = 0 on vy N W. As a result,
V' = 0 on the subset of W covered by geodesics passing through ¢, i.e. by the image of the exponential
map exp, : {2, C TyM — M. Since exp, is a local diffeomorphism (because dexp, [ = Id), we know
that the image of exp, contains an open neighborhood of ¢; thus, Z contains an open neighborhood
of q.

(d) As a consequence of part (c¢) of this exercise, we know that, on a connected Lorentzian
manifold (M, g), if two Killing fields V", V® satisfy V|, = V@], and VV |, = VV?)|, at a
point p € M, then V) = V) on the whole of M. Therefore, the maximum number of linearly
independent Killing vector fields on M is at most as large as the number of independent components
of the tangent vector V|, and the tensor VV|,,. Note that not all components of VV'|, are independent:
In any local coordinate system around p, the relation (1) can be written as

VQV5 + nga =0.

Therefore, VV|, has at most as many independent components as an antisymmetric matrix. Col-

lecting these observations, if dimM = n+1, then the number of independent components of V|, and

VV|, (and, therefore, the maximum dimension of the Killing algebra of (M, g)) is (n+1) 4 22t —

2
eréﬂ. Note that this upper bound is optimal, since it is achieved in the case of Minkowski

spacetime (R"™ 7)) and de-Sitter spacetime (R x 5", g4s).

6.2 (a) Let (M,g) be a smooth Lorentzian manifold and let V' be a Killing vector field on (M, g).
Show that for any geodesic v : I — M, the inner product g(¥, V') is constant along V.

*(b) Let M = R x M be a product manifold equipped with a Lorentzian metric g of the form
g=—f-dt@dt+dt @ w+wRdt + g,

where

ot: M=RxM — Ris the projection on the first factor.
f, h are smooth functions on M.

e}

O

w is an 1-form on M.
o g is a Riemannian metric on M.
Let & C M be the set where f < 0. Show that, for every p € R x &, there exists a

maximally extended null geodesic v : (a,b) — M for g with v(0) = p which does not
escape R x € (i.e. v(s) € R x € for all s € (a,b).
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Solution. (a) Using the identity (2) for a Killing vector field V for X = 4, we can readily compute
along a geodesic 4 of (M, g):

d

(VD) =4(9(V:4)) = 9(VsVi4) +9(V. V49) = 0+0.

Therefore, g(V,*) is constant along .

(b) Let T be the vector field which generates the translations of M = R x M in the R factor,
fixed by the requirement that T'(t) = 1 (where t : M == R x M — R is the projection on the first
factor). If (x!,...,2") is a local coordinate system on a subset U of M, we can extend it to a local
coordinate system (¢,z',....2") on R x U C M; in any such coordinate system, T is simply the
vector field %. Moreover, in such a coordinate system the metric g takes the form

g = —fdt* + 2wdtdx’ + g;;da'da?,

where w; and g;; depend only on x',... 2"; therefore, T = % is a Killing vector field on (M, g).
Moreover, in view of the form of g, we have

Furthermore, for any p = (ty,q) € M =R x M, if v € T, M satisfies dt(v) = 0 (i.e. v is tangential
to the slice {to} x M at p), then g(v,v) = gi;v'v’. Since g is Riemannian, we infer that any such v
is spacelike. Equivalently,

dt(v) #0 if g(v,v) <0 and v # 0. (8)

If ¢ ={qe M: f(q) <0} is non-empty and p € R x &, then (7) implies that T is spacelike
at p. Therefore, there exists a tangent vector v € T, M \ 0 such that v is null (i.e. g(v,v) = 0) and
satifies g(v, T|,) > 0 and dt(v)|, > 0 (note that any null vector v cannot satisfy dt(v) = 0, since that
would imply that v is spacelike by (8)). Note that this statement is the same as saying that in any
Lorentzian inner product space (V,m), if v; # 0 is a spacelike vector then there exists a null vector
vg with m(vy, v2) > 0 such that v is future directed (it is an easy exercise to show that this is true).

Let v : (a,b) — M (with 0 € (a,b)) be the mazimally extended geodesic with v(0) = p and
4(0) = v. Note the following facts:

e Since v is a geodesic, g(%,7) is constant along ~; therefore, g(¥(s),7(s)) = g(v,v) = 0 for all
s € (a,b), i.e. v is a null geodesic.

e By part (a) of this exercise, g(7,T) stays constant along ~y; therefore, g(§(s),T'|,()) > 0 for all
s € (a,b).

e Since % is nowhere spacelike along v, by (8) we have that dt(§(s)) # 0 for s € (a, b); therefore,
dt(¥(s)) > 0 (since this is the case for s = 0).

The above facts now imply that there can be no s € (a,b) such that y(s) € M\ (R x €): Assuming,
for the sake of contradiction, that such an s exists, then f > 0 at vy(s), i.e. T'| () is null or timelike.
Since dt(¥(s)) > 0 and dt(T) = T(t) = 1 > 0, T|y and §(s) belong to the same timecone in
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(Ty(M, g); the inner product of two causal vectors belonging to the same timecone is always < 0
(it is easy to check that), which is a contradiction in view of the fact that g(§(s),T'|,s)) > 0 for all
s € (a,b).

6.3 Consider the manifold M = R x R equipped with the Lorentzian metric

gads = —(1 + T2)dt2 —+ dT’2

1472

(this is known as the 1+ 1 dimensional Anti-de Sitter metric). Note that (M, g) can be thought
of as the universal Lorentzian cover of the (topological) cylinder S = {—2% — y? +7? = +1} in
the pseudo-Euclidean space (R**!, np 1)), where 11y = —da? — dy* + dr?.

(a) Show that (M, gaus) is timelike geodesically complete, i.e. that all timelike geodesics of
gags can be extended on the whole of R.

(b) Show that all timelike geodesics «y passing through (¢,7) = (0, 0) also pass through (¢,7) =
(km,0), k € Z. Show that there exists a point p € Z*[(0,0)] such that (0,0) and p cannot
be connected with a timelike geodesic.

Solution. (a) Let v : (a,b) = M, s = ~(s) = (t(s),r(s)), be a timelike geodesic; assume (by
shifting the parametrization, if necessary) that 0 € (a,b). Instead of using the second order geodesic
equation, we will find a closed expression for v using first order conserved quantities along ~.

e Since v is geodesic, the quantity gaqs(¥,7) is constant along ~y; since we assumed that ~ is
timelike, gaqs(7,¥). Expressed in coordinates, we have

1

—(1 + T(S)Q)ZEZ(S) + T?“(S)Q

72(s) = —A, A>0. (9)
e Since the components of gaqs in the (¢,7) coordinate system are independent of ¢, the vector
field T = % is a Killing vector field for gaq4s and, thus, gags(¥,T) is constant along . Therefore,
—(1+7(s)%)i(s)=—-B, BEeR (10)
Notice that, plugging the expression for ¢ from (10) in (9), we infer that
B* — A=r(s)?A+7(s)> > 0. (11)
Combining (9) and (10), we obtain:

a_ B
ds  1+7r(s)?’

% = :I:\/B2 — (1 + r(s)2)A.

(12)

Note that the equation for r(s) can be explicitly solved:
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e In the case when B? — A > 0,

r(e) dr A A

=+ i —aresin (] ————7(0)) = £v/As.
/r(o) N T s = arcsin ( T Ar(s)) arcsin < 7 Ar(O)) VAs
Therefore,

B2—A . _ A
r(s) = 7 sin < +VAs + p0> for py = arcsin ( mr(O))
e In the case when B? — A =0, (11) implies that
r(s) =0

(this is only the case if (0) = 0 and 7(0) = 0).

Notice also that, given the closed form for r(s), the function #(s) can be also determined by integrating

the equation for %, namely

t(s) =t(0) + /05 b ds.

14 r(s)?

We therefore note that the expression for v(s) = (t(s),r(s)) can be extended for s € (—o0,+00)
independently of the choice of the initial point (£(0),7(0)). In other words, every maximal timelike
geodesic in (M, gaqs) is defined for s € R and, thus, (M, gaus) is timelike geodesically complete.

(b) Let v : R — M, s — (t(s),r(s)) be a timelike geodesic such that (0) = (0,0). It will be
more convenient to change the parametrization of v, so that it is parametrized by the coordinate t
rather than the natural parameter s (this is possible since # # 0, according to (12) and the fact that
B? > A > 0; note that, with this parametrization, v will not be a geodesic. Moreover, in view of the
fact that, along v, we have (see (11)):

B’ — A=r(s)’A+#(s)’ > r(s)’A,

we know that

B- A
2
supr(s)” < .
el S Ty
Thus, from the equation
dt B
ds 14 7(s)?
we infer that inf,cg }%| > % > (0 and, therefore,
B>0
lim t(s) = T, ’
s—+00 —o0, B<O0

(and similarly for s — —o0).
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In particular, we can calculate:

() = (B =0 r (5t 5)

Depending on the value of B? — A, the above equation admits two types of solutions:

e If B> — A =0, then, as explained above, r(t) = 0.

e If B2 — A > 0, then, after integrating the above equation, we get

T(t) d t
2_ 2_
O () TR \/ T = g (r(®)?

Therefore, we infer that, for any A > 0 and B? > A, the point (¢,7) = (km,0), k € Z, belongs to the
curve . Thus, every maximal timelike geodesic through (0,0) passes through (,0).

For € > 0 sufficiently small, let us consider the points p = (0,0) and ¢ = (7, €). From the explicit
formula for timelike geodesics through p that we obtained above, it is easy to see that every such
geodesic s — (t(s),r(s)) satisfies 7(s) = 0 when ¢(s) = m. Therefore, no such geodesic passes through
the point ¢. On the other hand, there is a future directed timelike curve connecting p to ¢, namely
the curve s — (t(s),7(s)) = (s, £s), s € [0, 7]. Thus, p and ¢ are connected by a timelike curve but
not with a timelike geodesic.

Alternative approach: There is a more “geometric” way of constructing the geodesics of Anti-
de Sitter spacetime. The starting point for this is the following fact: On any pseudo-Euclidean
space (R™,7(.q)), Where 1, o) is the inner product of signature (p, ¢), p+ ¢ = m, given by the matrix

Npg = dlag(=1,...,—1,+1,...,+1),

fp fq

let S C R™ be a connected component of the set {x € R™: 5,4 (z,2) = M} for some M € R\ {0}
and let g denote the induced pseudo-Riemannian metric on S. Note that the standard round sphere in
Euclidean space, de-Sitter spacetime (viewed as a subset of (R"**, 7 ,,y)) and anti-de Sitter spacetime
after the identification ¢ = t + 27 (see the statement of this exercise) can all be expressed like this.
In this case, the intersection of any 2-plane II passing through 0 with S is (up to reparametrization)
a geodesic of (S, g) (and, in fact, all geodesics of S can be expressed in this way). This statement
should be familiar to you in the case of the round sphere, but the proof of that statement actually
is independent of the signature of the ambient inner product space, and consists of the following
observations:

e The acceleration of any curve lying in a 2-plane II is tangential to II.

e At any point r € S = {:c eER™: nepolz,z) = M}, the normal vector n with respect to
Np,q 18 parallel to x (i.e. to the radial vector). Moreover, if M # 0, the normal vector 7 is
not tangent to S (in particular, the induced metric ¢ is a non-degenerate pseudo-Riemannian
metric).
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e As a consequence of the above, if a curve 7 : (a,b) — S parametrizes the intersection IINS for
some 2-plane II and x € ~, then T,II is spanned by 7 ||  and 4, so the acceleration 4 (viewed
as a curve in R™) lies in the span of 1 and 4.

e For any submanifold M™~! € R™ with induced non-degenerate pseudo-Riemannian metric g,
the Levi-Civita connection V of § is obtained as the orthogonal projection on TM C TR™
of the flat connection of (R™,74,4). In particular, a curve v in (M, g) is a geodesic if its
acceleration 4 (when viewed as a curve in R™) is parallel to the normal 7 of M. Moreover, ~y
can be reparametrized to be a geodesic of (M, g) if 4 lies in the span of 1 and 4.

As a consequence of the above statements, we deduce that the geodesics of the cylinder S =
{—2* —y* +r? = +1} (viewed as a subset of (R*™,72,1))) are the intersections of S with 2-planes of
R?*! passing through the origin. In particular, timelike geodesics of S correspond to the intersection
with timelike planes, which can be easily seen to be ellipses wrapping around S. Note that, since
both § and any such timelike plane Il are symmetric with respect to the origin, if x € IINS then we
also have —x € 7N S. In particular, every timelike geodesic through x will have to also pass through
—x. Unwrapping the cylinder S along the S!' direction, it is easy to verify that this observation
corresponds to the statement of part (b) of this exercise.

6.4 Let (M, g) be a smooth Lorentzian manifold and let S C M be a smooth null hypersurface.
Let L be a non-zero vector field along S such that, for every p € S, L|, L T,S.

(a) Show that L is tangent to S (i.e. L|, € T,S for all p € 5).
(b) Show that, for any two vector fields X, Y tangent to S, we have

9(VxL,Y) =g(VyL,X).

(Hint: You might want to use the fact that, if V,W are two vector fields tangent to a
submanifold N C M, then [V, W] is also tangent to N.)

(c) Using the above formula, show that VL[, L T,S for all p € S. Show that
ViL =kL forsomex:S5S— R

Deduce that the integral curves of L in S are (up to reparametrization) null geodesics.
Infer that any null hypersurface of (R, 7) is a union of null lines.

(d) Assume, in addition, that there exists a Killing vector field V' on (M, g) such that V
is collinear with L along S (such a null hypersurface is called a Killing horizon). By
replacing L with V' in the above arguments, we infer that

VVV’S = KJV’S.

Show that the function x above is a constant along the null generators of S, i.e. V (k) = 0.
This is the surface gravity of the Killing horizon.
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(e) Show that the hyperplane H = {z = ¢} in (R**!,n) (with the usual Cartesian coordinate
system (t,z,y,2)) is a Killing horizon (and find the corresponding Killing vector field of
(R¥F1 n). Can you compute its surface gravity?

Solution. (a) For any p € S, let us consider the Lorentzian inner product space (1,M, g|,) and
let V =1T,S C T,M. Our assumption that S is a null hypersurface of M implies that V' is a null
codimension 1 hyperplane of T, M, i.e. the form g|, restricted to V is degenerate: There exists a
v € V such that g|,(v,w) = 0 for all w € V. Therefore, V C v = {w € T,M : g|,(v,w) = 0}. Since
V is of codimension 1 and v is also of codimension 1 (in view of the fact that g, is non-degenerate
on T, M, we cannot have g(v,w) = 0 for all w € T, M), we have

vhE=V

In particular, for any w ¢ V, the above relation implies that, necessarily, g|,(v,w) # 0. Since we
assumed thatL|, L V, we must have g|,(v, L) = 0; thus, L|, € V. Note that, in fact, L|, must be
parallel to v: Since L|, € V and L|, L V, we have L|, L L|, < ¢|,(L, L) = 0; but as we showed in
Exercise 2.1, if two null vectors (in this case v and L, are perpendicular to each other, then they
have to be parallel).

Remark. This is a general statement about Lorentzian inner product spaces (W, m): The per-
pendicular direction to a null hyperplane V' lies inside V', and it is simply the direction of the null
generator of V' (namely the direction in which m|y degenerates).

(b) We can readily calculate at any point on S:

(since g(L,Y) = 0 on S and we are differentiating in the direction of X which is tangential to .S)
and, similarly (with the roles of X and Y inverted):

g(VYL7X) = _g(La VYX)

Subtracting the above expressions and using the fact that the Levi-Civita connection is torsion-free,
we obtain:

g(VxL,Y)—g(VyL,X)=—g(L,VxY)+g(L,VyX) =g(L,VyX — VxY)=g(L,[X,Y]) =0,

since [X, Y] is tangential to S (given that X, Y are; you can check this in local coordinates in which
S is the level set {z° = 0}).

(c) For any p € S, we have showed in part (a) that L|, € T,S; therefore, plugging in X = L in
the relation proven in part (b), we obtain that, for any p € S and any Y € T,,S:

1
9lp(VLL.Y) = glp(VyL. L) = 5Y (9(L, 1)) |, = 0,

since g(L,L) = 0 on S (recall that L 1 7,5 and L € T,5) and Y is a direction tangential to S.
Therefore,

VoL, LT, "L L,
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Since any two perpendicular null vectors have to be parallel to each other (see Ex. 2.1), we infer that
VLL‘p = k,L|, for some k, € R.

Thus, along S, we have
ViL=kL forsomex:S5—R

(note that s has to be a smooth function, since both VL and L are smooth vector fields and L
doesn’t vanish).

Let v : [0,{] — M be an integral curve of L, i.e. y¥(0) € S and 4(t) = L|,q) for al t € [0,1];
note that such an integral curve has to lie inside S, since L is tangnetial to S (again, this can be
easily verified in local coordinates where S is the level set of one of the coordinate functions). Then
4 satisfies

Vit =kl (13)

This is the equation of a reparametrized geodesic: If we reparametrize v as
7(s) =yoh(s) for some strictly monotonic function h : [0,{] — [a, b],

then .
7(s) = h'(s)3(h(s)),
and (noting that, if f is a function defined along 7, then 4 (f|5)) = () las)

Vi 7(8) = Vg (' (s)7(h(s)))
F(s)()i(h(s)) + 1 (5) Vs 7(h(s))
' (s)7(h(s)) + B (5)Vias ¥ (h(s))-

Using the relation (13), we therefore infer that

Vi 1(s) = W' (s)7(h(s)) + Klynis) T (h(s))-

Choosing the function h so that h”(s) = —&|,m(s)), we therefore infer that V%(sﬁ(s) = 0, i.e. the
reparametrization v of v is a geodesic.

(d) Let V be a Killing vector field as in the statement of the Exercise. For any p € S, let U
be an open neighborhood of p in M with compact closure; for any ¢ > 0 sufficiently small, let
(ID ). U — M be the flow map associated to V (i e. the flow along the integral lines of V' for time
t). Because V is tangent to S, we have that ®{'") (¢4 N S) C S. Moreover, because V is Killing, the
map ") : (U, g) — ((ID(V) (U),g) C (M,g) is an isometry (i.e. (<I>£ ))*g = g). Our aim is to show
that the isometric flow of V' should leave the “geometric” relation

VVV’5 = I€V|S

invariant, which should imply that  is constant along the flow of V.
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In general, if ® : (Ny,91) = (N2, g2) is an isometry between to Lorentzian (or, more generally,
pseudo-Riemannian) manifolds, then ® “preserves” any natural construction obtained from the metric
tensor, such as the Levi-Civita connection. In particular, for any X, Y € T'(N;):

o* (VYY) = Vi, @Y,

where V@ is the Levi-Civita connection of g;; this can be seen by recalling that the Levi-Civita

connection V of a metric ¢ is uniqueley determined by the formula of Koszul (for any three vector
fields X,Y, Z):

29(VxY,Z) = X(g(Y,2))+Y (9(Z,X)) — Z(9(X,Y)) —g(X, [V, Z]) + 9(Z,[X.Y]) + g(Y,[Z, X]).

V)

In our case, since @, ’ is an isometry, we must have

(@) (TV) =¥ (o, ((B)V): (14)
Note that the map (@EV)); LM — Tq)(m(p)/\/l satisfies

(@) (V],) = Vg, (15)

(this is in general true for the flow map of any vector field; you can readily verify that in a system of

coordinates where V' = 1 and CID( is just a coordinate translation z' — x' 4 t). Therefore, using
the given relation
VVV|S = liV|S

n (14), we infer that
V) *
(@), (o V1y) = Fa VLot )

which, in view of (15) (and the linearity of (CDEV));), implies that
lipV|q>§v)(p) = chiv)(p)V’@EV)(p) = Kp = K‘Piv)(P)’

i.e. k is constant along the flow of p.
(e) Let H = {x =t} C (R*™',n). Tt is easy to verify that H is a null hypersurface with null

generator L = % + 5-. Note also that the boost vector field
0
V=t— —
ox * Tot

is a Killing vector field of (R*™!,n) which is collinear to L along H. In particular, H is a Killing
horizon. Note also that

0 0 0 0
VyV =V,s 2422 (ta + xa) ta %

and, therefore, along H = {z = t}:
VVV|’H - V|7—[
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In particular, k = 1.

Remark. Note that V' vanishes along the 2-surface H N {t = 0}. It is an easy exercise to verify
that, for any Killing horizon with positive surface gravity on which the null generators are complete
geodesics, the Killing vector field must vanish at some point along the null generator towards the
past in finite affine time. Another Killing horizon that we will encounter with a similar property will
be the event horizon of the maximally extended Schwarzschild spacetime.
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